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The effects of chaotic nuclear motion on time-resolved electron diffraction data recorded of vibrationally
highly excited polyatomic molecules are investigated. For this purpose the time-dependent scattering intensities
are expressed directly in terms of the joint phase space probability density in the form of the Wigner function.
A simple semiclassical procedure is described that allows one to obtain the scattering intensities for polyatomic
molecules in a state of chaotic nuclear motion using internuclear pair potentials. Model calculations show
that electron diffraction intensities of molecules in a state of chaotic motion are clearly different from intensities
obtained for systems in a state of regular nuclear motion. The procedure was applied to analyze electron
diffraction data of sulfur hexafluoride, SF6, recorded in the temperature range from 650 K, the spectroscopically
determined beginning of the quasi-continuum, up to 773 K. The analysis shows that, in this temperature
range, the molecule exists in a state of regular nuclear motion. This result is remarkable because it indicates
that the appearance of the quasi-continuum does not necessarily indicate the onset of chaotic nuclear motion.

Introduction

With the extension of electron diffraction to studies of time-
dependent molecular phenomena, such as coherent nuclear
dynamics in laser-excited molecules,1-7 wave packet evolution,7

or photodissociation and predissociation processes,1-7 it has
become necessary to develop theoretical expressions for electron
diffraction intensities that depend on other than equilibrium-
state distributions in molecular ensembles.

Time-resolved electron diffraction (TRED)1,2 is essentially
an integrative technique that provides time-averaged observa-
tions of an evolving ensemble of molecular states resulting, for
example, from the effects of a laser field. Nevertheless, despite
the integral nature of the data, it is possible to extract from them
detailed information on state distributions in molecular en-
sembles because, by applying stochastic techniques of data
analysis,1,8 one can determine time-averaged position probability
density functions. From the latter the density matrix9,10 of a
prepared molecular quantum state or a joint phase-space
probability density function, such as the Wigner function,11,12

can be reconstructed,13 using the so-called quantum sampling
technique of Leonhardt et al.14-17 or of Wünsche and Rich-
ter.18,19

A related area of study, one that has found considerable
interest for more than two decades (see, e.g., refs 20-23),
concerns the ability of molecular quantum systems to respond
to some time-dependent external excitation by changing from
a state of regular nuclear dynamics to one of chaotic motion.
So far, studies of the onset of quantum chaos have typically
been based on observations of the statistics of spectra20,24,25or
the statistics of energy level spacing.23 Recently, Wilkie and
Brumer26 have described how a statistically significant temporal
signature of quantum chaos can be extracted from the fluores-

cense decay of mixed molecular states prepared by multimode
partially coherent laser pulses.

It is the purpose of the current paper to describe a nonoptical
time-dependent technique suited for studying chaotic molecular
dynamics. Specifically, we want to describe the manifestation
of such chaotic behavior in TRED intensities of highly vibra-
tionally excited polyatomic molecules.

Theory

1. Molecular Intensity Function. TRED data of polyatomic
molecules vibrationally excited above the critical energy,Ec,27-29

which leads to the onset of chaotic nuclear motion, must be
expected to be different compared with such data recorded from
systems with the same characteristic energy, but in a hypotheti-
cal state of regular nuclear motion. This view is suggested by
wave function calculations21 which illustrate the specific evolu-
tion of the transition from regular to chaotic behavior. That is,
in the domain of regular motion, the wave functions are highly
localized in some region of state space, whereas they begin to
diffuse at the onset of chaotic behavior.21 Since TRED
intensities are functions of the position-dependent probability
density,P(r,t), they reflect directly the features associated with
this change of state. The time-dependent molecular electron
diffraction intensities,M(s,t), can be expressed in the following
way:1,7,8

wheres ) |s| ) 2|k| sin(ϑ/2), k is the momentum vector of the
scattered electrons,ϑ is the scattering angle,I0 is the incident
electron beam profile,R is the scattering distance,g(s) represents
the scattering functions,30 and sr is the dot product of the
scattering vectorsand the internuclear pairwise distance vector

M(s,t) ) (I0/R
2)g(s) ∫P(r,t) exp(isr) dr (1)
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r. Integration in eq1 and in the following equations is over the
infinite space, if not indicated otherwise.

In eq 1,P(r,t) ) |Ψ(r,t)|2. Evaluating the wave functions
Ψ(r,t) for highly excited polyatomic systems is a difficult
problem, which precludes direct calculations ofP(r,t) in most
cases. However, with some adequate assumptions, it is possible
to evaluate the joint phase-space probability density, e.g., the
Wigner function.11,12 The Wigner function,W(p,r), can be
determined11,12 by the equation

whereG is the density matrix9,10 andp is the momentum.
Considering the marginal property12 of W(p,r)

eq 1 can be written

whereRe{...} denotes the real part and the brackets〈...〉sp signify
spatial averaging over the molecular ensemble.

Equation 4 is the most general representation of TRED
molecular intensities in terms of the Wigner function. In this
representationM(s,t) can be interpreted as the filtered projection
of the Wigner function, with the scattering operator exp(isr) as
the filter, modified by the scattering functionsg(s).

For a classical ergodic system on the energy surfaceE )
H(p,r), where the Hamiltonian,H(p,r), has the standard form

Voros31,32has employed a semiclassical approximation by which
the average Wigner function over the accessible chaotic part of
phase space can be derived:

whereδ is Dirac’s delta function. Performing the integration
in eq 4 and taking eq 6 into account will yield, for randomly
oriented molecules, diffraction intensities,M(s), in the following
form:

whereΘ(E-V(r)) ) 0 for E < V(r), Θ(E-V(r)) ) 1 for E g
V(r), and N is the number of degrees of freedom. Thus, all
points on the surface of constant energyE are equally probable.
As pointed out by Berry,33 it is an important feature of the
probability density function of chaotic motion, employed in eq
7, that it vanishes at the classical turning points and is zero
outside of the classically accessible areaΓ(E), in contrast with
the probability density functions describing regular motion.

In a time-independent Hamiltonian system, chaos can occur
only if N g 2. For polyatomic molecular systems of bonded
atoms it is suggested that, in the chaotic region, each internuclear
distance is a three-dimensional random vector, with one degree
of freedom removed due to bonding. In this case eq 7 simplifies
to

The integration in eq 8 is overΓ(Ε), whereE G V(r). In the
polyatomic case,V(r) is an internuclear pair potential; eq 8 has
to be executed for each atom pair, and the total molecular
intensities are the sum of the contributions of all the internuclear
pairwise distances of the molecule.

Equation 8 is in agreement with the fact that all points on
the surface of constant energy are equally probable, and
consequently, the probability density in position space is
uniform, which is the defining property of chaotic systems.
Uniformity of the position space probability density for multi-
dimensional chaotic systems is also predicted by the Akulin-
Dykhne model,34 which describes the excitation of a system
with an irregular spectrum. This model was introduced for
molecular excitation in a monochromatic laser field, and it
predicts the existence of a zone of energy levels34 in the vicinity
of Ec. Uniformity of the spatial probability density function in
the case of strongly chaotic systems is also suggested by the
consideration that chaotic orbits in a conservative system tend
to uniformly35 visit all parts of a subspace of phase space.

Results and Discussion

To illustrate some aspects of the theory described above, we
first considered the case of a one-dimensional harmonic oscil-
lator. In real systems, chaotic nuclear motion can be established
only in molecules with more than two atoms. However, since
electron diffraction intensities depend mainly on pairwise
internuclear distances, a diatomic molecule in a hypothetical
chaotic state can serve as a good example to illustrate the
manifestation of chaotic motion in electron diffraction data.

Figure 1. Theoretical electron diffraction intensities (upper) and radial
distribution (RD) curves (lower) for carbon monosulfide (CS) in an
equilibrium Boltzmann distribution over the temperature range from 0
to 5000 K. It is seen that the intensities exhibit an ever-increasing mono-
tonic damping with increasing temperatures, in accord with traditional
molecular scattering models. In the RD curves, essentially the Fourier
transforms of the intensities, the same trend manifests itself through
ever-broadening, Gaussian-like, peaks as the temperature increases.

W(p,r) ) (1/πp)∫exp(2ipx/p)〈r - x|G|r + x〉 dx (2)

P(r,t) ) |Ψ(r,t)|2 ) ∫W(r,p,t) dp (3)

M(s,t) ) (I0/R
2)g(s) Re{∫dp∫dr W(r,p,t)〈exp(isr)〉sp} (4)

H(p,r) ) p2/2m + V(r) (5)

W(p,r) ) δ(E-H(p,r))/∫dr ∫dp δ(E-H(p,r)) (6)

M(s) ) (I0/R
2)g(s){∫dr [(E - V(r))N/2-1Θ(E-V(r))] ×

(sin(sr)/sr)/∫dr [(E - V(r))N/2-1Θ(E-V(r))]} (7)

M(s) ) (I0/R
2)g(s){∫Γ(E)

(sin(sr)/sr) dr} (8)
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Connecting with previous studies,7,8 we have selected carbon
monosulfide as a test case. First, intensities and radial distribu-
tion (RD) curves were calculated for CS in an equilibrium
Boltzmann vibrational distribution. As described previously,7,8

these calculations were performed with variational wave func-
tions37 obtained by solving Schro¨dinger’s equation with an
established potential function36 of CS. The results are shown
in Figure 1. Subsequently, corresponding intensities and RD
curves, but for chaotic nuclear motion, were calculated using
eq 8, for a series of arbitrarily selected energies (see Figure 2)
which were used to calculateΓ(Ε). Comparisons of Figures 1
and 2 show that the diffraction data and RD curves for CS are
significantly different in the two states. In addition, it was found
that the characteristic features of radial distribution associated
with chaotic motion cannot be simulated by adjusting the level
of vibrational energy in the procedures applying to regular
motion.

As a second test case sulfur hexafluoride, SF6, was selected
because it is an effective model for illustrating the procedures
described above and experimental electron diffraction data are
available38 in the temperature range up to 773 K, i.e., above
the onset39 of the quasi-continuum (QC) at 650 K.

Internuclear pair potentials of SF6, obtained as described in
ref 8, are shown in Figure 3. Diffraction intensities and RD

curves for regular and chaotic motion are shown in Figures 4
and 5, respectively. As in the case of CS, it is seen that the
characteristics of both the intensity and RD curves are signifi-
cantly different for the two states. When the parameters of the
regular state were refined to model any of the curves corre-
sponding to the chaotic state, unrealistic results were obtained.
These results are not unexpected because, in principle, it seems
impossible to simulate the features of regular distributions by
probability density functions which, like those applying to
chaotic motion,31-33 vanish at the classical turning points.

A previous electron diffraction study38 of SF6 has shown that,
in equilibrium molecular ensembles at different temperatures

Figure 2. Theoretical electron diffraction intensities (upper) and RD
curves (lower) for CS in a hypothetical “chaotic” distribution. The
curves were modeled for arbitrary available energies of the chaotic
system, which correspond to the first 20 vibrational levels of the
nonchaotic molecule. In contrast to the equilibrium distributions (Figure
1), the intensities do not decline monotonically but instead exhibit an
increasingly apparent phase reversal at higher scattering angles. The
RD curves show an increasing breadth and flatness, corresponding to
the spread in the turning points of the potential surface, and the uniform
probability density of the model.

Figure 3. Experimental probability densitiesP(r) and pairwise
potentialsV(r) for the three internuclear distances of sulfur hexafluoride
(SF6) at an equilibrium temperature of 773 K. TheP(r) were derived
from the stochastic modeling procedure of ref 8; the effective potentials
shown are for the anharmonic (solid line) case, as derived from the
data, and the harmonic case (dotted line), for comparison.

Figure 4. Theoretical electron diffraction intensities (upper) and radial
distribution (RD) curves (lower) for SF6 in an equilibrium Boltzmann
distribution over the temperature range from 0 to 5000 K. Overall
features are similar to those described in Figure 1, but with added beat
patterns due to additional interference among the three internuclear
distances present.
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between 293 and 773 K, the observed nuclear dynamics of this
molecule are entirely consistent with the assumption of regular
motion on an adiabatic potential energy surface in normal
vibrational coordinates. Apart from the general features of the
data, this conclusion is strongly suggested by the fact that the
equilibrium internuclear distance,re(S-F), is independent of
temperature in the whole temperature range within(0.08 pm.38

This result is interesting because Bloembergen et al.39 have
found that, in collisionless multiphoton absorption studies of
SF6 with picosecond CO2 laser pulses, the vibrational temper-
ature of 650 K is hot enough for SF6 to be considered in the
QC,29,39which is characterized27-29 by a high density of states,
i.e., F(E) > 10 per cm-1.

Conclusions

The material presented above shows that, in principle, electron
diffraction data can provide clear signatures of the onset of
chaotic nuclear dynamics, in contrast to regular nuclear motion,
in polyatomic molecules.

For the specific case of SF6 our results indicate that, above
the appearance of the QC at 650 K39 and up to 773 K, the
nuclear dynamics of the molecule do not exhibit the character-
istic features of chaotic nuclear motion. This result is note-
worthy because complications of optical spectra, which are
observed concomitantly with the appearance of the QC, are often
rationalized as manifestations of the onset of chaotic nuclear
dynamics.
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Figure 5. Theoretical electron diffraction intensities (upper) and radial
distribution (RD) curves (lower) for SF6 in a hypothetical chaotic state
over a range of available energies corresponding to the temperatures
shown; the foremost curves (5000 K) correspond to∼600 kJ mol-1,
distributed equally among the vibrational modes of the molecule.
Classical turning points were derived from the experimental pairwise
potentials shown in Figure 3. Other features of the curves are similar
to those described in Figure 2.
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